刘硕著2019 年出版208 页ISBN:9787302536505
本书讲解目前流行的机器学习算法,包括线性回归、Logistic回归、Softmax回归、朴素贝叶斯、决策树、支持向量机、K近邻、kmeans、PCA、人工神经网络。每个算法分为三部分讲解:1.数学模型理论推导2.基于numpy的...
赵志勇著2017 年出版343 页ISBN:9787121313196
本书是一本机器学习入门读物,注重理论与实践的结合。全书主要包括6个部分,每个部分均以典型的机器学习算法为例,从算法原理出发,由浅入深,详细分析算法的理论,并配合目前流行的Python语言,从零开始,实现每一个......
Python与机器学习实战 决策树、集成学习、支持向量机与神经网络算法详解及编程实现
何宇健编著2017 年出版315 页ISBN:9787121317200
单就机器学习而言,其领域就包括但不限于:有监督学习、无监督学习和半监督学习,具体的问题又大致可以分两类:分类问题和回归问题。本书主要介绍各种有监督分类器的原理与Python实现,对于无监督问题和回归问题则相...
(印)萨扬·穆霍帕迪亚(Sayan Mukhopadhyay)著2019 年出版156 页ISBN:9787111617020
本书介绍了基于Python的高级数据分析,探讨了Neo4j、Elasticsearch和MongoDB等数据库,讨论了如何实现包括主题爬取在内的ETL技术,并用于高频算法交易和目标导向的对话系统等领域;还介绍了一些机器学习概念(如半监...
唐宇迪著2019 年出版449 页ISBN:9787115512444
全书共20章,大致分为4个部分。第1部分介绍了Python必备的工具包,包括科学计算库Numpy、数据分析库Pandas、可视化库Matplotlib;第2部分讲解了机器学习中的经典算法,例如回归算法、决策树、集成算法、支持向量机...
翟锟,胡锋,周晓然编著2019 年出版177 页ISBN:9787302516842
这本书是一本入门书,也是一本提高书,它提炼总结了作者从python小白到python建模工程师的历程;如果你有志于进入数据分析/建模领域,它一定会让你惊喜。书中的代码你可以直接用,具有很高的可移植性。通读它,学会它,....