H.M.Schwartz2017 年出版185 页ISBN:9787111569602
本书主要介绍了多智能体机器人强化学习的相关内容。全书共6章,首先介绍了几种常用的监督式学习方法,在此基础上,介绍了单智能体强化学习中的学习结构、值函数、马尔科夫决策过程、策略迭代、时间差分学习、Q学...
(印)拉结帝普·杜瓦,(印)曼普利特·辛格·古特拉,(南非)尼克·彭特里思著;蔡立宇,黄章帅,周济民译2018 年出版378 页ISBN:9787115497833
本书基于Spark 2.x全面修订,内容涵盖推荐系统、回归、聚类、降维等经典机器学习算法及其实际应用。相比上一版,本书新增了有关机器学习数学基础以及Spark ML Pipeline API 的章节,内容更加系统、全面、与时俱...
(加)海金著2011 年出版572 页ISBN:9787111324133
《神经网络与机器学习》是Simon Haykin的神经网络经典著作《神经网络原理》的第三版。这一版对神经网络和学习机器这两个密切相关的分支进行了全面分析,在前一版的基础上作了广泛修订,提供了神经网络和机器学...
张丽著2017 年出版141 页ISBN:9787121314469
本书主要讲述科学计算可视化的内容、技术现状和挑战,机器学习基本理论,使用Adaboost和CAVIAR两种方法进行科学计算可视化的理论和方法。全书共7章,主要内容包括:概述,流场数据对象及流场特性,流场基础特征可视化,...
神经网络与深度学习实战 Python+Keras+TensorFlow
陈屹编著2019 年出版326 页ISBN:9787111632665
本书通过理论与项目实践相结合的方式引领读者进入人工智能技术的大门。书中首先从人工智能技术的数学基础讲起,然后重点剖析神经网络的运行流程,最后以大量的实际项目编码实践方式帮助读者扎实地掌握人工智能...
(美)梅尔亚·莫里(Mehryar Mohri),(美)阿夫欣·罗斯塔米扎达尔(Afshin Rostamizadeh),(美)阿米特·塔尔沃卡尔(Ameet Talwalkar)著2019 年出版290 页ISBN:9787111622185
本书从概率近似正确(PAC)理论出发探讨机器学习的基础理论与典型算法,包括PAC学习框架、VC-维、支持向量机、核方法、在线学习、多分类、排序、回归、降维、强化学习等丰富的内容。此外,附录部分简要回顾了与机...
郑捷著2015 年出版414 页ISBN:9787121273674
本书是机器学习原理和算法编码实现的基础性读物,内容分为两大主线:单个算法的原理讲解和机器学习理论的发展变迁。算法除包含传统的分类、聚类、预测等常用算法之外,还新增了深度学习、贝叶斯网、隐马尔科夫模...
邬学宁,陈泽平,曹晓华,王洪刚著2018 年出版332 页ISBN:9787302501626
全面介绍企业机器学习的背景,SAP的机器学习平台SAPClea,和十余种机器学习算法的思想、原理与实现。通过12个行业50个企业创新案例,启迪读者基于大数据,利用机器学习进行业务创新,并使用SAP数据科学框架,工具和方...