CHAPTER 1 Introduction 1
1.1.The use of X-rays for microscopy 1
1.2.Contact microradiography 2
1.3.Reflexion X-ray microscopy 4
1.4.Point projection with X-rays 7
1.5.Scanning methods 9
1.6.Comparison with optical and electron microscopy 9
1.6.1.Penetration and absorption in matter 10
1.6.2.X-ray emission analysis 11
1.6.3.Microdiffraction 12
1.6.4.Stereomicro-scopy 12
1.6.5.Resolving-power 13
1.7.Scope and applications of X-ray microscopy 14
1.7.1.Materials opaque to light 14
1.7.2.Structure of thick specimens 14
1.7.3.Living organisms 14
1.7.4.Quantitative microanalysis in biology 15
1.7.5.Quantitative microanalysis of inorganic specimens 15
1.8.Other X-ray methods 16
1.8.1.'Darkfield'imaging by the Berg-Barrett method 16
1.8.2.Optical reconstruction of lattice structure 17
1.8.3.Diffraction microscopy 17
CHAPTER 2 Contact Microradiography 19
2.1.Introduction 19
2.2.Absorption of X-rays in matter 21
2.2.1.Absorption coefficients 22
2.2.2.Fluorescence radiation 25
2.2.3.Absorption edges 26
2.3.Optimum conditions for microradiography 27
2.3.1.Wavelength and specimen thickness 28
2.3.2.Choice of characteristic,continuous or fluorescent radiation 33
2.4.Geometrical blurring of the micro-image 34
2.5.Photographic and optical requirements 37
2.5.1.High resolution emulsions 37
2.5.2.Optical enlarging system 40
2.6.Ultimate resolving-power of the contact method 40
2.6.1.Unsharpness in image formation 41
2.6.2.Image spread 41
2.6.3.Size and aggregation of photographic grains 42
2.6.4.Resolving-power of the enlarging system 43
2.6.5.Contrast requirements 43
2.6.6.Ultimate resolution 43
2.7.Associated techniques of microradiography 44
2.7.1.Stereo-microradiography 44
2.7.2.Microfluoroscopy 45
2.7.3.Electron microradiography 45
CHAPTER 3 Microscopy by Point Projection 48
3.1.Introduction 48
3.2.The geometry of projection 50
3.3.Fresnel diffraction 54
3.4.Experimental systems 58
3.4.1.Camera obscura 58
3.4.2.Point anode tube 59
3.4.3.Window target tube 60
3.5.Electron optical limitations 62
3.5.1.Cathode emission 62
3.5.2.Lens aberrations 63
3.6.Target limitations 66
3.6.1.Production and absorption of X-rays 66
3.6.2.Thermal dissipation 67
3.6.3.Electron scattering 68
3.6.4.Choice of target material 71
3.7.Photographing the image 72
3.8.Comparison of the contact and projection methods 74
3.8.1.Resolution 74
3.8.3.Field of view 74
3.8.3.Exposure-time 77
3.8.4.Experimental convenience 78
3.9.Intermediate magnifications 80
3.9.1.Arbitrary magnification 81
3.9.2.The times-two method 84
CHAPTER 4 Reflexion X-Ray Microscopy:Mirror Systems 87
4.1.Total reflexion of X-rays 87
4.2.Dioptric focusing 91
4.3.Focusing by total reflexion 94
4.4.Aberrations of a cylindrical mirror of circular section 98
4.4.1.Spherical aberration 100
4.4.2.Coma 102
4.4.3.Obliquity of the field 103
4.4.4.Curvature of the field 104
4.5.Astigmatism and distortion 105
4.6.Compound systems of circular mirrors 109
4.7.Compound systems of figured mirrors 111
4.8.Practical design of the reflexion X-ray microscope 114
4.8.1.Experimental arrangements 116
4.9.Practical limitations 118
4.10.The ultimate limit set by diffraction 120
CHAPTER 5 Reflexion X-Ray Microscopy:Curved Crystals 123
5.1.Efficiency of Bragg reflexion 124
5.2.Focusing at glancing incidence 126
5.2.1.Crystals curved at right angles to the plane of incidence 127
5.3.Focusing at near normal incidence 131
5.4.Focusing by ring mirrors 136
CHAPTER 6 X-Ray Absorption Microanalysis 139
6.1.Microanalysis by differential absorption 139
6.1.1.Measurements at an absorption edge 142
6.1.2.Microweighing and microanalysis 144
6.2.Dry weight determination 145
6.2.1.Principles of the method 145
6.2.2.Microphotometry 147
6.2.3.Experimental errors 149
6.2.4.Resolving-power and limit of detection 150
6.2.5.Improvements in the contact method 151
6.2.6.Water content 152
6.3.Absorption micro-spectrometry by the contact method 153
6.3.1.Procedure 153
6.3.2.The spectrometer 156
6.3.3.Experimental errors 157
6.4.Photo-graphic considerations 160
6.4.1.The characteristic curve 160
6.4.2.Grain size and granularity 163
6.4.3.Variation of sensitivity with wave-length 165
6.4.4.Equivalent effective wavelength 166
6.5.Absorption analysis by the projection method 170
6.5.1.X-ray tube and spectrometer 171
6.5.2.The recording system 175
6.5.3.Errors in counter recording 178
6.5.4.Comparison with the contact method 181
CHAPTER 7 X-Ray Emission Microanalysis 183
7.1.Emission microspectrometry 183
7.1.1.Experimental conditions for direct excitation 183
7.1.2.Corrections;limits of accuracy 188
7.1.3.Discrimination between elements 193
7.1.4.Comparison with other methods 196
7.2.The static spot microanalyser 197
7.3.The scanning microanalyser or flying-spot X-ray microscope 202
7.3.1.Apparatus 202
7.3.2.Applications 205
7.4.Fluorescent microspectrometry 206
CHAPTER 8 Production of X-Rays 212
8.1.Electron emission and focusing 212
8.1.1.General requirements 212
8.1.2.Thermionic emission 214
8.1.3.Field emission 215
8.2.Heat dissipation in the target 217
8.2.1.Thick target 217
8.2.2.Thin target 217
8.2.3.Needle target 219
8.2.4.Heat balance in a thin target 220
8.3.Electron range in the target 222
8.4.Spectral distribution 223
8.5.Efficiency of X-ray production 226
8.5.1.The continuous spectrum 226
8.5.2.The characteristic spectrum 228
8.6.Angular distribution 232
8.7.Filtration and other means of monochromatization 236
8.7.1.Filters 236
8.7.2.Self-filtration 237
8.7.3.Total reflexion 238
8.7.4.Crystal monochromators 240
CHAPTER 9 Specimen Preparation Techniques 241
9.1.Biological and medical specimens 241
9.1.1.Freeze-drying 241
9.1.2.Embedding and sectioning 242
9.1.3.Injection and staining 244
9.1.4.Mounting the specimen for contact microradiography 246
9.1.5.Mounting the specimen for projection or reflexion X-ray microscopy 249
9.1.6.Living organisms 249
9.2.Metallurgical and industrial specimens 250
9.2.1.Sectioning by grinding 251
9.2.2.Shadow-casting and replica methods 252
CHAPTER 10 Techniques of Contact Microradiography 254
10.1.Apparatus for contact microradiography 254
10.1.1.General considerations 254
10.1.2.Apparatus for hard radiation(<2?) 256
10.1.3.Apparatus for soft radiation(2-10?) 258
10.1.4.Apparatus for ultra-soft radiation(>10?) 260
10.2.Recording the microradiograph 263
10.2.1.Photographic considerations 263
10.2.2.Optical enlargement 263
10.3.Stereoscopic microradiography 264
10.4.Microfluoroscopy 266
CHAPTER 11 Techniques of Projection Microscopy 270
11.1.The electron gun 270
11.2.The focusing system 272
11.2.1.Single-stage demagnification 273
11.2.2.Two-stage demagnification 273
11.2.3.Astigmatism and its correction 276
11.2.4.Comparison of electro-static and magnetic lenses 279
11.3.Constructional details 281
11.3.1.Magnetic lens model 281
11.3.2.Electrostatic lenses 284
11.4.Mechanical and electrical stability 285
11.5.Electrical supplies 288
11.6.Vacuum requirements 289
11.7.Microscope alinement 291
11.8.Microscope focusing 292
11.9.Photographic recording 296
11.10.Stereographic projection 296
11.11.Transmission targets 300
11.12.Maintenance of projection X-ray microscopes 303
11.13.Commercial models of the projection microscope 304
CHAPTER 12 Applications of X-Ray Microscopy in Biology and Medicine 306
12.1.Living specimens 306
12.1.1.Rabbit 306
12.2.1.Insects 308
12.1.3.Ciné X-ray microscopy 308
12.1.4.Radiation dosage to the specimen 309
12.2.Thick sections 310
12.3.Thin sections 314
12.4.Botanical specimens 317
12.5.Quantitative applications 319
CHAPTER 13 Inorganic Applications of X-Ray Microscopy 322
13.1.Metallurgy 322
13.1.1.Iron and steel-segregations and inclusions 322
13.1.2.Cast iron 323
13.1.3.Iron ores and sinters 324
13.1.4.Other ores and minerals 325
13.1.5.Light metal alloys 325
13.1.6.Diffusion 328
13.1.7.Spot welding 329
13.1.8.Castings 329
13.1.9.Other metallurgical applications 330
13.2.Industrial applications 331
13.2.1.Paper 331
13.2.2.Fibres and fabrics 332
13.2.3.Geology 333
13.2.4.Miscellaneous 334
CHAPTER 14 Microdiffraction 336
14.1.X-ray tubes 336
14.1.1.Micro-focus X-ray tubes 337
14.1.2.Reflexion types 340
14.2.Cameras and methods 342
14.2.1.Transmission 344
14.2.2.Back reflexion 344
14.2.3.Forward reflexion 345
14.2.4.Divergent beam 347
14.2.5.Selected area 349
14.2.6.Powder cameras 349
14.2.7.Moving specimen and film types 350
14.3.Conclusion 350
CHAPTER 15 Some New Experimental Methods 351
15.1.The scanning system as an X-ray image intensifier 351
15.2.Other forms of image intensifier 354
15.3.Image conversion X-ray microscope 356
15.4.Projection X-ray microscopy:focusing by back-scattered electrons 359
15.5.Projection X-ray microscopy:focusing by forward-scattered electrons 362
15.6.Contact microradiography with electron microscope enlargement 365
COMMENTS ADDED IN PROOF 367
APPENDIX Absorption and Emission Data 372
A.1.X-ray mass-absorption coefficients of certain elements and of dry air for the wavelength range 0.710-8.321 ? 372
A.2.X-ray mass absorption coefficients of certain elements for the wavelength range 8.34-44 ? 375
A.3.Principal emission lines of the K-series(wavelengths in ? units) 375
A.4.Principal emission lines of the L-series(wavelengths in ? units) 377
REFERENCES 380
INDEX 403